Funktionsgraphen verstehen - bettermarks (2024)

+49 30 300 2440 00

– Mo bis Fr von 8:30 - 17 Uhr

BlogKontaktHilfe

UnterrichtenPreiseWirkungÜber uns

RegistrierenEinloggen

UnterrichtenPreiseWirkungÜber unsRegistrieren

bettermarks » Mathebuch » Algebra und Funktionen » Funktionen und ihre Darstellungen » Grundwissen über Funktionen » Funktionsgraphen verstehen

Sind Sie Lehrerin oder Lehrer für Mathematik in den Jahrgangsstufen 4 bis 12/13?

bettermarks bietet über 200.000 adaptive Mathematik-Aufgaben, die sich von automatisch korrigieren. Ihre Schülerinnen und Schüler bekommen bei jedem Fehler eine personalisierte Rückmeldung und Sie erhalten Auswertungen zum Lernstand der Klasse.

Mehr erfahren

Hier erfährst du, wie du Funktionsgraphen interpretieren und dadurch nützliche Informationen aus ihnen ablesen kannst.

  • Aus Funktionsgraphen Wertepaare ablesen
  • Definitions- und Wertebereich am Funktionsgraphen erkennen
  • Besondere Punkte auf dem Funktionsgraphen
  • Monotonie-Intervalle
  • Funktionsgraphen und Prozesse

Aus Funktionsgraphen Wertepaare ablesen

Das ist der Funktionsgraph der Funktion f(x) = x 2 - 8 .

Funktionsgraphen verstehen - bettermarks (2)

Der Graph einer Funktion f besteht aus allen Wertepaaren (x;y), wobei x den Definitionsbereich der Funktion durchläuft und stets y = f(x) gilt.

Zum Beispiel gehört für x = -2 das Wertepaar ( -2 ; -4 ) zum Graphen der Funktion f(x) = x 2 - 8 , denn die Funktion f(x) = x 2 - 8 ordnet dem Wert x = -2 den y-Wert y = f( -2 ) = -2 2 - 8 = 4 - 8 = -4 zu.

Da Wertepaare (x;y) als Koordinaten von Punkten (x|y) im Koordinatensystem betrachtet werden können, ist es möglich, den Funktionsgraphen wie im obigen Bild zu visualisieren.

Die Veranschaulichung des Graphen einer Funktion im Koordinatensystem wird als Funktionsgraph oder einfach Graph (der Funktion) bezeichnet.

Bei der Interpretation eines Graphen sind folgende Fertigkeiten hilfreich:

1. Koordinaten von Punkten auf einem Funktionsgraphen ablesen.

2. Die Lage einzelner Punkte bezüglich eines Funktionsgraphen bestimmen. Ein Punkt kann über, unter oder auf dem Funktionsgraphen liegen.

Wo liegen die Punkte A( -1 |1), B(0|6), C( -2 | -4 ), D(1|3) und E(2| -8 ) bezüglich des Graphen der Funktion g "

Funktionsgraphen verstehen - bettermarks (3)

Die Punkte A( -1 |1) und E(2| -8 ) liegen auf dem Graphen, denn ihre y-Koordinaten sind genauso groß wie die Funktionswerte von g an den zugehörigen Stellen x A = -1 , also y A = 1 = g(-1), und x E = 2 , also y E = -8 = g(2).

Die Punkte C( -2 | -4 ) und D(1|3) liegen oberhalb des Graphen, denn ihre y-Koordinaten sind größer als die Funktionswerte von g an den zugehörigen Stellen x C = -2 ,

also y C = -4 > g( -2 ) = -8 und x D = 1 , also y D = 3 > g(1) = 1.

Der Punkt B(0|6) liegt unterhalb des Graphen, denn seine y-Koordinate ist kleiner als der Funktionswert an der zugehörigen Stelle x B = 0 , also y B = 6 < g(0) = 8.

Funktionsgraphen verstehen - bettermarks (4)

Graphen kannst du nutzen, um zu vorgegebenen x- oder y-Werten die jeweils zugehörigen y- bzw. x-Werte - zumindest näherungsweise - zu bestimmen.

Vervollständige die Wertetabelle so, dass jedes Wertepaar zum Graphen der Funktion u gehört.

Funktionsgraphen verstehen - bettermarks (5)

Funktionsgraphen verstehen - bettermarks (6)

Wertetabelle vervollständigen

Wenn der x-Wert gegeben ist, gehst du wie folgt vor:

Du wählst denjenigen Punkt des Graphen, dessen x-Koordinate gleich dem gegebenen x-Wert ist, und liest den zugehörigen y-Wert ab.

Funktionsgraphen verstehen - bettermarks (7)

Wenn der y-Wert gegeben ist, gehst du wie folgt vor:

Du wählst denjenigen Punkt des Graphen, dessen y-Koordinate gleich dem gegebenen y-Wert ist, und liest den zugehörigen x-Wert ab.

Funktionsgraphen verstehen - bettermarks (8)

Funktionsgraphen verstehen - bettermarks (9)

Eine Funktion y = f(x) ordnet jedem x-Wert genau einen y-Wert zu. Umgekehrt muss das nicht sein.

Es ist möglich, dass es zu einem y-Wert mehr als einen x-Wert gibt, so dass y = f(x) ist.

Funktionsgraphen verstehen - bettermarks (10)

Es gibt drei verschiedene x-Werte, denen der Wert 2 zugeordnet ist.

Bestimme alle x-Werte so, dass die Punkte (x| -2 ) auf dem Graphen der Funktion u liegen.

Funktionsgraphen verstehen - bettermarks (11)

x-Werte ablesen

Du wählst diejenigen Punkte des Graphen, deren y-Koordinate -2 ist, und liest die zugehörigen x-Werte ab:

x = -9 , x = -3 , x = 6 und x = 9 .

Funktionsgraphen verstehen - bettermarks (12)

Die x-Werte sind:

-9; -3 ; 6; 9

Definitions- und Wertebereich am Funktionsgraphen erkennen

Hast du eine Funktion nur durch ihren Graphen gegeben, kannst du - zumindest näherungsweise - den Definitionsbereich und den Wertebereich der Funktion ablesen.

Funktionsgraphen verstehen - bettermarks (13)

In der Abbildung ist nicht zu erkennen, ob die Punkte (0|0), (1|1), (1|0) und (2|1) zum Funktionsgraphen gehören und ob der y-Wert 1 überhaupt zugeordnet wird.

In solchen Fällen werden spezielle Darstellungen für Punkte verwendet.

Funktionsgraphen verstehen - bettermarks (14)

Um beim Zeichnen eines Funktionsgraphen hervorzuheben, dass ein Punkt zum Graphen gehört, wird er mit einem ausgefüllten Kreis markiert.

Um beim Zeichnen eines Funktionsgraphen hervorzuheben, dass ein Punkt nicht zum Graphen gehört, wird er mit einem leeren Kreis markiert.

Der Definitionsbereich besteht aus allen x-Werten, zu denen es Punkte auf dem Graphen gibt.Die Punkte (0|0) und (1|0) gehören zum Graphen, der Punkt (2|1) jedoch nicht.Der Definitionsbereich besteht hier aus allen x-Werten zwischen 0 und 2 einschließlich der 0, aber ohne die 2.

Kurz: 0 x < 2 bzw. x aus [0; 2[.

Der kleinstmögliche Wertebereich besteht aus allen y-Werten, zu denen es Punkte auf dem Graphen gibt.Der Punkt (1|1) gehört nicht zum Graphen. Der kleinstmögliche Wertebereich besteht also aus allen y-Werten zwischen 0 und 1 einschließlich der 0, aber ohne die 1.

Kurz: 0 y < 1 bzw. y aus [0; 1[.

Funktionsgraphen verstehen - bettermarks (15)

Besondere Punkte auf dem Funktionsgraphen

In vielen Anwendungen der Mathematik geht es um Vorgänge bzw. Zusammenhänge, die mit Hilfe von Funktionen beschrieben werden können.

In vielen Fällen spielen dabei besondere Punkte des Graphen eine wichtige Rolle.

Funktionsgraphen verstehen - bettermarks (16)

Das Maximum ist der größte Wert, den eine Funktion annimmt. Die Funktion f nimmt ihren größten Wert im Punkt (7|7) an.

Das Minimum ist der kleinste Wert, den eine Funktion annimmt. Die Funktion f nimmt ihren kleinsten Wert im Punkt (-5|-8) an.

Beachte, dass es Funktionen gibt, die keinen größten bzw. kleinsten Wert annehmen.

Eine Nullstelle ist die x-Koordinate eines Schnittpunktes des Graphen mit der x-Achse. Der Graph der Funktion f schneidet die x-Achse im Punkt (-2|0).

Der y-Achsenabschnitt ist die y-Koordinate des Schnittpunktes des Graphen mit der y-Achse. Der Graph der Funktion f schneidet die y-Achse im Punkt (0|4).

Ein Hochpunkt ist ein Punkt auf dem Graphen, durch den der Graph hindurch läuft und in dessen Umgebung die Funktionswerte nicht größer sind als der y-Wert am Hochpunkt. Die Funktion f hat einen Hochpunkt bei (0|4).

Ein Tiefpunkt ist ein Punkt auf dem Graphen, durch den der Graph hindurch läuft und in dessen Umgebung die Funktionswerte nicht kleiner sind als der y-Wert am Tiefpunkt. Die Funktion f hat einen Tiefpunkt bei (3|1).

Beachte, dass die beiden Punkte am Rand des Definitionsbereichs keine Hoch- bzw. Tiefpunkte sind, da man sich diesen Punkten auf dem Graphen jeweils nur von einer Seite nähern kann.

Beachte außerdem, dass mehrere besondere Punkte auch zusammenfallen können. Im Beispiel fallen Hochpunkt und y-Achsenabschnitt zusammen.

Monotonie-Intervalle

In vielen Anwendungen ist von Interesse, wie sich die Werte einer Größe ändern, beispielsweise ob sie größer werden oder kleiner.

Mit Hilfe sogenannter Monotonie-Intervalle kannst du Bereiche angeben, in denen eine Funktion steigt oder fällt.

Oft kann man Monotonie-Intervalle sehr gut - zumindest näherungsweise - am Graphen einer Funktion ablesen.

Im Folgenden Bild sind die Intervalle und die zugehörigen Graphenabschnitte markiert, in denen die Funktion f steigt.

Funktionsgraphen verstehen - bettermarks (17)

Die Funktion f steigt also in den Bereichen -8 x -3 und 1 x 6.

Funktionsgraphen und Prozesse

Die Gestalt eines Funktionsgraphen kann Auskunft darüber geben, in welcher Art und Weise ein bestimmter Prozess abläuft.

Ein Gefäß wird bei gleichbleibendem Zufluss mit Wasser gefüllt. Die Füllstandhöhe in Abhängigkeit von der Zeit ist in folgendem Graphen veranschaulicht.

Funktionsgraphen verstehen - bettermarks (18)

Zu welchem der drei Gefäße passt der Graph?

Graph zuordnen

Am Funktionsgraphen erkennst du, dass zu Beginn des Auffüllens der Wasserstand sehr schnell steigt. Das Gefäß muss also am Boden sehr schmal sein.

Somit entfällt das zweite Gefäß, da dieses unten breit ist.

Im weiteren Verlauf steigt der Füllstand immer langsamer. Also muss das Gefäß nach oben hin immer breiter werden.

Das gesuchte Gefäß ist der auf der Spitze stehende Kegel.

Funktionsgraphen verstehen - bettermarks (19)

Funktionsgraphen verstehen - bettermarks (20)

Weitere Themen

  • Lernwirksame Funktionen von Intelligenten Tutoriellen Systemen verstehen und einsetzen

Funktionsgraphen verstehen - bettermarks (22)Funktionsgraphen verstehen - bettermarks (23)

Produkte

UnterrichtenPreiseOnline-Schulung

Unternehmen

Über unsBlogPresseJobsKontakt

Service

RegistrierenLoginPasswort vergessenHilfe

© 2008 bis 2024 - bettermarks GmbH - Alle Rechte vorbehalten

DatenschutzAGBImpressum

Wir nutzen Cookies auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern. Wenn Sie unter 16 Jahre alt sind und Ihre Zustimmung zu freiwilligen Diensten geben möchten, müssen Sie Ihre Erziehungsberechtigten um Erlaubnis bitten. Wir verwenden Cookies und andere Technologien auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern. Personenbezogene Daten können verarbeitet werden (z. B. IP-Adressen), z. B. für personalisierte Anzeigen und Inhalte oder Anzeigen- und Inhaltsmessung. Weitere Informationen über die Verwendung Ihrer Daten finden Sie in unserer Datenschutzerklärung. Sie können Ihre Auswahl jederzeit unter Einstellungen widerrufen oder anpassen.

Datenschutzeinstellungen

Alle akzeptieren

Speichern

Individuelle Datenschutzeinstellungen

Cookie-Details Datenschutzerklärung Impressum

Funktionsgraphen verstehen - bettermarks (24) Datenschutzeinstellungen

Wenn Sie unter 16 Jahre alt sind und Ihre Zustimmung zu freiwilligen Diensten geben möchten, müssen Sie Ihre Erziehungsberechtigten um Erlaubnis bitten. Wir verwenden Cookies und andere Technologien auf unserer Website. Einige von ihnen sind essenziell, während andere uns helfen, diese Website und Ihre Erfahrung zu verbessern. Personenbezogene Daten können verarbeitet werden (z. B. IP-Adressen), z. B. für personalisierte Anzeigen und Inhalte oder Anzeigen- und Inhaltsmessung. Weitere Informationen über die Verwendung Ihrer Daten finden Sie in unserer Datenschutzerklärung. Hier finden Sie eine Übersicht über alle verwendeten Cookies. Sie können Ihre Einwilligung zu ganzen Kategorien geben oder sich weitere Informationen anzeigen lassen und so nur bestimmte Cookies auswählen.

Alle akzeptieren Speichern

Zurück

Datenschutzeinstellungen

Essenzielle Cookies ermöglichen grundlegende Funktionen und sind für die einwandfreie Funktion der Website erforderlich.

Cookie-Informationen anzeigen Cookie-Informationen ausblenden

Name
Anbieter Eigentümer dieser Website, Impressum
Zweck Speichert die Einstellungen der Besucher, die in der Cookie Box von Borlabs Cookie ausgewählt wurden.
Cookie Name borlabs-cookie
Cookie Laufzeit 1 Jahr

Statistik Cookies erfassen Informationen anonym. Diese Informationen helfen uns zu verstehen, wie unsere Besucher unsere Website nutzen.

Cookie-Informationen anzeigen Cookie-Informationen ausblenden

Akzeptieren
Name
Anbieter Stetic GmbH
Zweck Verbesserung der Webseite
Datenschutzerklärung https://www.stetic.com/de/privacy/
Host(s) bettermarks.com, bettermarks.de
Cookie Name stetic
Cookie Laufzeit 1 Jahr

Inhalte von Videoplattformen und Social-Media-Plattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Einwilligung mehr.

Cookie-Informationen anzeigen Cookie-Informationen ausblenden

Akzeptieren
Name
Anbieter Vimeo Inc., 555 West 18th Street, New York, New York 10011, USA
Zweck Wird verwendet, um Vimeo-Inhalte zu entsperren.
Datenschutzerklärung https://vimeo.com/privacy
Host(s) player.vimeo.com
Cookie Name vuid
Cookie Laufzeit 2 Jahre

Datenschutzerklärung Impressum

Funktionsgraphen verstehen - bettermarks (2024)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Horacio Brakus JD

Last Updated:

Views: 5327

Rating: 4 / 5 (51 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Horacio Brakus JD

Birthday: 1999-08-21

Address: Apt. 524 43384 Minnie Prairie, South Edda, MA 62804

Phone: +5931039998219

Job: Sales Strategist

Hobby: Sculling, Kitesurfing, Orienteering, Painting, Computer programming, Creative writing, Scuba diving

Introduction: My name is Horacio Brakus JD, I am a lively, splendid, jolly, vivacious, vast, cheerful, agreeable person who loves writing and wants to share my knowledge and understanding with you.